
 

 

                              

 

 

Velimir Abramovic, 

 Ph D in Philosophy: 

 

HOW ‘MANY INFINITIES’ ARE THERE IN MATHEMATICS? 

 

(From “The Basics of the Science of Time”)   

 

While reading Cantor’s “Diagonalization Argument”, I realized that it 
contains nothing which can be taken for granted, but that this proof must be 
analyzed in a classical manner, statement by statement, symbol by symbol, 
walking through it on foot, using small steps.  This manner is necessary, among 
other reasons, because the essence of every trick, particularly an intellectual one 
- lies in the illusion of the apparent. 

I have accepted the verification of Cantor’s proof (theorem) as something 
entirely personal because, if it is true that there is more than one infinite in 
arithmetic, then my effort is pointless, my theory of time incorrect, and 
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mathematics and physics will forever remain two fundamentally unrelated 
sciences. 

For the sake of continuity, Cantor’s proof will first be presented here in its 
entirety, and then analyzed in detail, and finally we will present our own 
conclusion to the “counting of all decimal numerals” which is in accordance 
with Mellis’ sound minded principle by which “infinities cannot coexist”.  

“Cantor's Diagonalization Argument 

Suppose that the infinity of decimal numbers between zero and one is the 
same as the infinity of counting numbers. Then all the decimal numbers can be 
counted in a list. 

1 d1 = 0.d11d12d13d14 ....... 

2 d2 = 0.d21d22d23d24 ....... 

3 d3 = 0.d31d32d33d34 ....... 

4 d4 = 0.d41d42d43d44 ....... 

. . . 

n dn = 0.dn1dn2dn3dn4 ....... 

. . . 

Consider the decimal number x = 0. x1x2x3x4x5 ....... , where x1 is any digit 
other than d11; x2 is different from d22; x3 is not equal to d33; x4 is not d44; and so 
on. Now, x is a decimal number, and x is less than one, so it must be in our list. 
But where? x can't be first, since x's first digit differs from d1's first digit. x can't 
be second in the list, because x and d2 have different hundredths place digits. In 
general, x is not equal to dn, since their nth digits are not the same. 

x is nowhere to be found in the list. In other words, we have exhibited a 
decimal number that ought to be in the list but isn't. No matter how we try to list 
the decimal numbers, at least one will be left out. Therefore, "listing" the 
decimal numbers is impossible, so the infinity of decimal numbers is greater 
than the infinity of counting numbers.” 

Now let us review this, concept by concept, statement by statement: 
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“Infinity of decimal numbers”; what kind of infinity is this if it has zero 
and one as its outer limits?  

“Infinity of counting numbers”; what kind of infinity is this if it has zero 
and n as its outer limits?  

Infinity cannot have any outer limits.  An unspecified many is not infinity, 
or rather, an “infinite number” is a contradictory concept in itself unless it refers 
to zero. 

"Suppose that the infinity of decimal numbers between zero and one is 
the same as the infinity of counting numbers.” 

For this assumption to be precise, it must be preceded by the definition of 
a decimal number.  Every position of a decimal entry has a value of 10, that is to 
say that it immediately covers the entire first decade of natural numbers (0.n has 
an interval of 0.0, 0.1, 0.2, 0.3… – 0.9) and it is instantly clear that by using 
1,2,3…n only decimal places, tens, hundreds, thousands, etc. can be mono-
symbolically counted but not all the concrete numerical values in those places. 

The number of decimal places of every specific decimal number, for 
example 0.1, is equal to the number of its decimals, it is 1:1 but, if that number 
is expressed as 0.d, then the number of appropriate d rises to ten.  This 
compression of 10:1 is the essential characteristic of the decimal expression in 
whole numbers and, if it is disregarded, listing becomes unachievable. 

It will become evident here that the primary flaw of Cantor’s list is its 
poor development, or rather, that the number of decimal numbers in it does not 
correspond to the number of decimal places and the number of places does not 
correspond to the number of actual decimals to be listed.  For example, the first 
decimal number 1d1= 0.d11 … has only one place for ten of its possible first 
decimals.  This shows us that, not only the reinstatement of ontology 
indispensable in mathematics, but also that the induction of principles of 
simultaneity is necessary in order to be able to express the essence of the 
coexistence of mathematical objects in interaction (e.g. in mathematical 
operations). 

“Then all the decimal numbers can be denumerated in a list.  

1 d1 = 0.d11d12d13d14 ....... 

2 d2 = 0.d21d22d23d24 ....... 
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3 d3 = 0.d31d32d33d34 ....... 

4 d4 = 0.d41d42d43d44 ....... 

    . . . 

n dn = 0.dn1dn2dn3dn4 ....... 

    . . .” 

Let us observe in detail how the list is placed and why by it, as it is, it 
isn’t possible to inventory all decimal numbers. 

By simply analyzing d we would find nothing new; d has an ontological 
function and it is there to simply claim the existence of a decimal number in the 
shape of d=0,dddd…d…, less than zero. 

Constructed under a right angle with vertical and horizontal components, 
the list begins from left to right with the natural numbers 1,2,3,4…n, which are 
meant to count all the decimal numbers d1,d2,d3,d4…dn.  This is all in accordance 
to the presumption and up to the equality sign all is well.  Then Cantor develops 
a horizontal component of the list, e.g. the first decimal number in 1d1= 
0.d11d12d13d14 …, the second decimal number in 2 d2 = 0.d21d22d23d24 … etc. 

Already the first index symbol of the decimal has an unbalanced meaning 
because, to the left, as an index, e.g. 1d1 refers to a decimal number, while on the 
right, index 0.d1 refers to only fractions of that number (1d1= 0.d11d12d13 …). 

The second index numeral 0.d11d12d13…, marks the places in the decimal 
listing, the tenth, hundredth, thousandth, etc..  In each of these decimal places, in 
lieu of another decimal digit, any number from 0 to 9 may be expressed.  Let us 
focus our attention on the significance of the second index number: it exists to 
express, in one symbol, a group of ten numbers.  This is not specifically stated in 
Cantor’s table and that makes it lack the solidity to elaborate on the power of 
decimal numeration (listing). 

Horizontally, the second index digit grows by one, yet this does not 
ensure that the tenth, hundredth, thousandth, etc. decimal of the same decimal 
number – differ. They may repeat.  Vertically, the second decimal number is the 
same for tenths, hundredths, thousandths, etc. and again there is no specific 
indication that their decimals in these places are equal.  Herein, precisely, lies 
the problem: between the first and second index numbers, e.g.  the principle of 
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equivalency does not apply to the number 0.d11, or rather, a mutual mono-
symbolic replication cannot be applied; the first index number signifies the exact 
number expressed, while the second index number does not signify with which 
it is expressed, but is the place number of the decimal place and simultaneously 
a symbol representing a group of ten numbers, or the symbol for the decade 
interval of a decimal (0,0;0,1;0,2;0,3…0,9), implicitly reduced to one single 
decimal by 0. d1.  In temporalized mathematics this is a typical example of 
asynchronous numbers, those which by assumption cannot physically-
mathematically coexist. 

Let us now analyze the characteristics of Cantor’s x decimal number and 
why it is of such weak resolution in this table that it is impossible to find.  
Cantor defines it as follows: “Consider the decimal number x = 0. x1x2x3x4x5 
....... , where x1 is any digit other than d11; x2 is different from d22; x3 is not 
equal to d33; x4 is not d44; and so on.” 

Foremost, the expression “ x = 0. x1x2x3x4x5 ...” applies only to x=n=0, in 
other words, does not apply to any other concrete value 0. x1x2x3x4x5… a number 
such as this cannot be equal to x.  The reason for this being that a whole and any 
portion of it cannot be synchronic.  This will be discussed in more detail at a 
later time while, here, we will elaborate on the analysis of x as assigned by 
Cantor: 

The number x for every decimal only has one index numeral in the 
horizontal with a rate of growth of one.  Thus, one and the same index numeral 
of the number 0.x1x2x3x4x5 …, has a double meaning, with two meanings being 
obvious: first, it marks the tenth, hundredth, thousandth, etc. place of the number 
x, second, with a growth rate of one it shows that x can have an unlimited 
number of successively different decimals.  However, there is also a third, 
unexpressed, hidden meaning of x itself, which is presumed and, as such, in a 
thesis such as this one, is unforgivable. Namely, it is obvious that x in the 
expression 0.x1x2x3x4x5…, is there to substitute any of 10 different decimals, 
which assures that x1 might never coincide with d11 , x2  with d22 , x3 with d33 , 
…because 0.d numbers only cover one decimal value at a time. 

Within the differences of the decimal places, the vertical component of 
the list does not allow for the random coincidence of the index decimal x and the 
first index numeral of the number dn, and the possibility of the equivalence of x 
and dn is narrowed down to one exclusive possibility, in the case of 0. x1 = 0.d11, 
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in which case (x = 0. x1x2x3x4x5 …) = (d1 = 0.d11d12d13d14 ... ) also applies.  This 
is the exact possibility that Cantor dismissed by subjective intervention, giving 
the crown condition under which his proof begins to apply: “where x1 is any 
digit other than d11 “.  Every sensible person will then inquire “alright, x1 is not 
d11, than which digit is it?”  This is where the deconstruction of Cantor’s 
“Diagonalization Argument” begins with the simple enlargement of resolution 
of the list.  The philosophical justification for this conscious induction of the 
principle of coexistence into mathematics with a basis of the simultaneity of 
numbers, a principle which the medieval theologist and mathematician Duns 
Scott already noted as having the purpose of physically limiting the concept of 
true infinity.   

But let us bring our attention back to the equivalency of x1 and d11.  As we 
have already mentioned, the primary flaw of Cantor’s list is that the number of 
decimals which should be simultaneous to the number of decimal places, is not 
equivalent to it, but 10 times greater, which becomes the deciding factor if the 
choice of decimals is not executed.  For example, the number 0.3 has one 
decimal place (the present) and, in that place, one decimal (also the present), 
thus – synchronicity, the entire number exists in “the present”.  However, the 
generic number 0,x has one decimal place in the “present”, which is implicit 
simultaneously of ten different decimals 0,1,2,3…- 9 from the “future” (because 
of this it is marked as x) until a choice has occurred of the “future present” of 
0,x and x attains its concrete numeric value. 

In fact, by expressing the generic values  as a,b,c,x,y… we represent the 
“unknown future 0,1,2,3,4,5…” as the “known present a,b,c,x,y…’, which is 
merely one of the many temporal contradictions in the constitution of generic 
numbers.  

In order to test our interpretation of Cantor’s index, let us try to, instead of 
any d in his list, insert a generic final decimal, i.e. 0.341.   Here we encounter a 
problem: 0,3 is not d11, 0,04 is not d22, 0,001 is not d33.  It is obvious that the 
index digits cannot be mono-symbolically interpreted as natural numbers, but 
only as they are already interpreted.  The second index digit also does not mean 
only what is written, but must be interpreted as the interval between the numbers 
from 9 to 0, as has been done. 

 In Cantor’s list, the final array element of the vertical chain  1,2,3,4…n is 
symbolized as n, ndn = 0.dn1dn2dn3dn4 …, as this is the number of all decimal 
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numbers and this supports his thesis. However, horizontally, he leaves this same 
chain as 1,2,3,4… not counting it to n.  Why the inconsistency? The reason is 
very important: had he generalized the second index digit as n, and gotten ndn = 
0.dn1dn2dn3dn4 …dnn, he would have, with this second index n, expressed the 
number of all decimal places and have opened the question of the possible 
number of intervals (0-9) in those places.  He would then have had to rethink his 
proof, his “argument of diagonalization”.  Namely, if values 1-9 aren’t 
expressed in the decimal places, then all decimal places may be treated as “parts 
of zero”, e.g. the number of decimal places is also the number of all decimal 
places in one decimal number, as well as the number of all decimal places of all 
decimal numbers and the number of all possible decimals in those places which, 
of course, is the number n: 

ndn = 0.dndndndn   …dn  …, 

This way, horizontally and vertically, the number and meaning of the 
index digit is balanced with the coefficient nd, the list is brought to its proper 
initial position and thus the problem of listing decimal numbers is defined. 

Let us also observe this:  let us symbolize the very idea of a decimal using 
the value n=0, that is: 

0d0 = 0.d0d0d0d0 …d0 … 

 Here zero has a triple meaning: a) the decimal number in general, b) any 
decimal place, the tenth, hundredth, thousandth…, and c) any decimal interval  
n=0,1,2,3…9., thus, it can mean itself.  Temporally, here zero is a symbol for 
the principle of simultaneity of these possibilities.  Now, if we translate the idea 
of a decimal number into a general idea, e.g. substitute zero with  n=1,2,3…n, 
we get the basis for Cantor’s list, or rather: 

1 d1 =  0.d1d1d1d1 … 

2 d2 =  0.d2d2d2d2 … 

            3 d3 =  0.d3d3d3d3 … 

 4 d4 =  0.d4d4d4d4 … 

               … 

 This uncovers the first hidden purpose of this kind of listing, which we 
cannot easily disregard: while the indexes d1 ,d2 ,d3 ,d4 …dn, cannot take on 
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zero value, but have no upper limit, (1,2,3…n), and indexes 0.d1 ,0.d2 , 0.d3 , 
0.d4  … may take on zero value, but are limited up to the number 9.  Thus, in no 
other case except in  0d0 = 0.d0d0d0d0 …d0 … can a mutual equivalency of index 
symbols be attained. 

  A wonderful example of mathematical asynchronicity and where, in the 
listing, or specifically where it is forbidden because the complete list must be 
synchronic with the variability of it’s components in order to bring them into the 
same present, or rather to contain them all in one register.  This much for now 
but we will specifically go into explaining “synchronic causality” in detail, 
where we will show that synchronicity is the cosmological stipulation for 
interaction and that it also universally applies to entities in the so called “past” 
or “future”.  Incidentally, merely to soften the effect of temporal laws, many 
logical inventions have been interpolated into mathematics, to name a few: an 
unclear “principle of equivalency”, an imprecise “cardinal number”, a paradox 
“principle of”, the “axiom of choice” with no time component, and others. 

 For the inventory to succeed, all the initial digits must be in equivalent 
correlation.  In Cantor’s list ‘one decimal place means one decimal number, 
but the other way it isn’t so, since the one decimal number may have many 
decimal places’, thus there is no 1:1 correspondence at all and the listing of all 
decimals is not even attempted.  From a wider stance, Cantor’s list is also absurd 
in a way that “it lacks the numbers” to “count things”, that is to say x is a 
“surplus of things”.  As if all decimal numbers, x included, were not made up of 
units (ones) taken from the natural number sequence N, the same N sequence 
that it claims not to be able to count.  In this sense, we will demonstrate that 
there are as many decimal numbers, to the one, as there are natural numbers. 

 In our synchronic list, the principle of 1:1 is applied to the full interval of 
decimals by one decimal place and achieves triple univocal correspondence, 
1:1:1, or rather that “one decimal place means one decimal which means one 
decimal number”. 

 The breakdown of decimal numbers into elements is the conditio sine qua 
non their “listing”, in other words, their two-way corresponding (mono-
symbolic) counting in “ones” (units) of the natural number sequence N, in any 
case interpreted as the correlation of one decimal number to one natural number 
1:1, 1:2, 1:3, 1:4…1:n.  We emphasize that all n components of this “new 
complete list” – “cantorian”, actual – actually coexist, which consistently and 
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truly, in a mathematically true” manner, implement the principle of 
synchronicity of numbers. 

 This kind of analysis is crucial so as to express a complex self-identity of 
decimal numbers, e.g. to clearly differentiate concepts whose meanings overlap, 
as are the concepts of the whole decimal number, the decimal place and specific 
decimals.   

 Let us now observe why Cantor at the end of the sequence ndn= 0.d1n d2n 
d3n d4n ...does not write dnn but rather leaves three dots?  He does this because it 
would undermine, or rather disprove his proof; it would show that, in the 
“listing”, he identifies 10 decimals with each decimal place, which would be the 
same as claiming that eleven ones is only one.  Of course, had he written dnn , he 
would then have had to reevaluate the entire problem.  We are left with the 
impression that Cantor did not in fact honestly stand to count decimal numbers, 
but was in a hurry to draw us into his belief by using a numerical trick.  Were 
this any different, he would not be drawing the conclusion from a mistaken 
assumption that ten variables of decimals can be counted by the use of one (unit) 
(Cantor’s second index digit 0.d11, etc.), thus drawing the impossible conclusion 
of the existence of multiple mathematical infinities. 

 Let us focus on the following: a careful observer will notice that with the 
first index digit Cantor only counts whole decimal numbers and, with the second 
index digit, only decimal places.  Decimals are not even taken into account by 
his list. The monopoly of choices of specific decimal values is left to the 
ethereal and a list of the independent number x = 0.x1 x2 x3 x4 ... Where we, of 
course, cannot find it. However, in fact, no specific decimal number, for 
example 0.321, cannot be substituted into this list instead of any d.  In essence, 
this entire proof is an extreme example of incomplete deduction.  Though it is 
widely accepted, this proof is simply ridiculous.  

 We specifically mention that n and n+1  are not simultaneous, which we 
will elaborate on in detail in another segment, yet, without particular 
explanation, we can use their imminent timely characteristics, wherever they are 
in synchronous correlation, e.g. where n/n=n+1/n+1=1, which is our case 
exactly. 

    Equivalency, simultaneity, comparison: 

 Through the elements of decimal numbers, the equality of all decimals, all 
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decimal places and all decimal numbers is achieved, thus attaining a triple 
equivalency.  From the self-identity of the decimal 1, a 1:1 correspondence of a 
decimal and decimal places decimal has been deduced, followed by the 1:1:1 
correspondence with decimal numbers.  This brings the list down to what it has 
been deduced from, simply one general decimal number d=0.d.  

But what is the difference then in the numbers  d1 ,d2 ,d3 ..., when one sole 
concrete decimal number can be expressed as 1d1 , and as 1d2 and as 1d3 ... and 
also two different decimal numbers can be expressed as, for example , 1d1?  

 This is analogue to the question – what is the difference between the one 
that we add to two and the one that we add to a three or four in the sequence 
n+1?  The difference is of the most crucial importance – in the existential 
individuality; in the time-space sense, it is not the same one because there are 
three and not one. Certainly it is not ontologically the same as in a mathematical, 
or rather physical reality, when we work with, for example, a  0,37 as with a 
n(0.37).  However, in modern mathematic stripped of ontology, (e.g. the science 
of existence) this is not even taken under deliberation.  

 Let us return to the “listing”.  Hence, as all the elements of the list are 
known in advance, as are their relations, the induction is complete, without the 
habitual “jump to deduction” and it is therefore significant to clarify it fully. 

 The algorithm of my list expresses the timely nature of mathematics, in 
other words, it is constructed in such a way that it also encompasses the human 
experience of succession in a timely order of the actualization of decimal 
numbers.  That is the full sense of the constant (n′), which realizes the temporal 
connection of the possible (all d numbers in the eternal present) and the actual 
(concrete d numbers in the same or different presents). 

 Synchronicity is not only the stipulation for the coexistence of 
mathematical objects, but also the statute for the propriety of their individual 
actualization, thus the first specifically chosen decimal number, let us say 
0,87496..., must be 1d1, the second, even if it is, let us suppose, equal to it , 
0,87496..., must be 2d2, the third 3d3 ..., n-th must be ndn. Each first actualized 
number ndn is consisted in 1d1, each second 2d2, each third in 3d3..., and the 
vice-versa, 1d1, 2d2, 3d3 ..., together are actual in ndn. For the actual plural ndn 

the field of actualization of the first number is 10d1, of the second 10d2, of the 
third 10d3... however, by the actualization of a concrete number, the possibility 
identifies with reality, narrowing the choice to one each 1d1, 1d2, 1d3... 1dn. If 
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we initially write 0.87325= d4, that will temporally define this decimal number 
as the fourth actual number in the order of coexistent numbers.  This way, all 
actual decimal numbers d1, d2, d3, d4... are synchronized with the cosmos of 
possible numbers ... dn. 

 Here is where we must answer the question why coexisting numbers are 
not labeled the same, if they are necessarily simultaneous?  This would be 
similar to asking why people of different ages live in the same present. 

 Real coexistence is confusing; it is the deepest temporal law in the mutual 
order of cycles and entities otherwise placed in different times, it is the eternity 
that connects the different presents and because of this appears as a chaos that 
theologists, philosophers and scientists doubt has any law to it.  In this study we 
will demonstrate the manner in which real coexistence creates the impression of 
the existence of past and future, an impression that time itself is in motion, that 
it has a flow and direction. 

 In a mathematical sense, the general notion of coexistence coincides with 
Archimedes’ definition of continuum as – “the infinite sum of unequal parts”, 
in other words, it coincides with the concept of continuum as “the generator of 
unequal units”.  Under the condition that the reason is uncovered and the 
manner defined by which the finite becomes independent in the infinite, we shall 
observe that Archimedes’ definition leads us to what we will call “the natural 
continuum of real numbers”. 

 The correct and full answers to all of this are of extreme importance and a 
particular portion is dedicated to the discussion of time as a relation of 
ostensibly unrelated numbers and the cause of ostensibly unrelated events.  For 
the moment, we will remain on the subject of our mathematical case and more 
precisely explain the necessity of differently expressing certain numbers that 
coexist, even when they are equal.  The origins of this are the three logical levels 
of their coexistence the first is ndn  in which all d numbers are actual, the second 
is 10d1 in which only the first number d1 is actual, and the third is 1d1n′  in which 
a concrete individual number is actualized, for example  0,74658.... The true 
purpose for insisting on the specific and, for the modern mathematical mind – 
too many symbols, is to define the physical characteristics of numbers in their 
ambiguously purely mathematical interaction.  The physics of numbers should 
first theoretically be solved in mathematics into which we have had insight far 
more than into physics, where we encounter in experiments, numbers that have 
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already become things, already with objectified, physical numbers whose 
characteristics and origins we are not acquainted with. 

 You might also pose this question: “Alright, if for the counting of every d 
I need three units of the natural sequence N, doesn’t this after all mean that there 
are three times more decimal numbers than N?”  Of course this is not what it 
means, but the answer is not exactly simple.  A decimal number is a complex 
numeral system of three elements and it can in no way be counted by one 
without losing the characteristics that make it the number that it is. Let us 
observe the natural number 3, which needs less interpretation.  The number 3 is 
also a complex system; it can also not be counted with 1.  If we were to do so, 
we would end its individuality and would not be able to tell the difference 
between it and a four, a five, a six… it would become the generic number n.  
The number 3 is in itself the symbol for the number of elements it is comprised 
of and so it is apparent that three ones of a natural sequence are needed to count 
it in 1:1 correspondence, or rather for 3:3 to be in correlation to 1:1.  Hence, for 
each decimal number d whose elements can be counted with three ones of N, as 
is true for all d numbers, the correspondence (3 elements d) to (3 ones N) the 
ratio is 1:1, in other words if the number of elements of d and N have a growth 
rate of one each, then d is equivalent to N, d ∼ N. 

 

The explication of “the synchronization method” list in the numeration 
of all decimal numbers by the natural number sequence N:     

Every group, however complexly arranged, can be counted by the ones of 
the natural number sequence N if it can be deconstructed into elements. 

A decimal place constitutes the concept of a decimal number.  For a 
number to be decimal, it must have at least one decimal place and, it that place, 
one decimal. For n one-decimal numbers, there are exactly n decimal places.  In 
order to reach synchronicity in the counting of all decimal numbers a firm 
principle of equivalency must be obeyed which is the mathematically logical 
expression of synchronicity, e.g. the consistent application of a 1:1 ratio. 
Considering that a decimal number may have several decimal places and in 
order to keep a strict equivalency, we will calculate this number as being several 
decimal numbers, for example with the number 0.975, we will count it with 
three units of natural numbers, e.g. (0.9) -1, (0.07) -1 and (0.005) -1, also with 
the number 0.001, e.g. (0.0) -1, (0.00) -1, (0.001) -1.  This way we achieve the 
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equivalency of the number all decimal numbers nd to the number of all their 
decimal places 0.nd, or rather nd = 0.nd.  In following with that, the number 
with 17 decimal places will be counted as the sum of 17 individual decimal 
places, 17d = 0.17d.  For a decimal number with an unlimited growth of decimal 
places, this correspondence is also 1:1, and (n+1) d = 0. (n+1) d, because for n 
= n, n+1 = n+1.  

However, the power of each individual decimal place is one decimal 
interval of 10 numbers (0.1,2,3...9).  As we are not acquainted which of these 10 
numbers is in which of the decimal places of the decimal number and, in order 
to keep the 1:1 principle, it is imperative that each decimal place additionally be 
counted with ten ones of natural numbers each.  The following constant is most 
practical for this: 

Introduction into the synchronic list: 

There can be (n) decimal numbers (d), each number can have (n) decimal 
places and in each of these places there can be one decimal interval n’(9,8,7...0);  
for d=0.d, that is n (dnnn′ = 0.dnnn′).  How do we know that the number of 
decimals (n′)in one decimal place (n′) is constant – (10), this means that the 
number of all decimals is equal to the tenth degree of the number of decimal 
places, in other words equal to the power of ten of all decimal numbers.  For this 
difference to be balanced, all decimal numbers must be calculated as an 
individual decimal number and counted by a unit of the sequence N= 
1,2,3,4…n; as we have already stated, for the counting of each decimal number, 
or its three elements, we need three units of the natural sequence and, thank 
goodness, there were quite enough of those for this count also. 

For the condition of synchronicity, t=t, a time must be balanced, d11 

(“present”) with time x1 (“future present”), so that T d11 = Tx1 .  We will 
accomplish this by synchronically developing the elements  d11 to the degree that 
they include the “future” x1 . Thus, we will develop the potential of Cantor’s 
second index dn = 0.dn1dn2dn3dn4 … into its explicit and full form; (full meaning 
analyzed to the elements in a synchronic relation).  We will do this by adding a 
vertical component to the second index so that we may express the full potency 
of decimal places which it symbolizes. 

For the number 1 d1 = 0.d11d12d13d14 ... the fully developed temporal 
potential of that number is:  
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1 d1 =    0.d119  d129  d139  d149  d159   d169  d179  d189  d199  d1109   …0.d1n9 

   0.d118  d128  d138  d148  d158   d168 d178  d188  d198  d1108  …0.d1n8  

   0.d117  d127  d137  d147  d157   d167 d177  d187  d197  d1107  …0.d1n7 

   0.d116  d126  d136  d146  d156   d166 d176  d186  d196  d1106   …0.d1n6 

   0.d115  d125  d135  d145  d155   d165 d175  d185  d195  d1105   …0.d1n5 

   0.d114  d124  d134  d144  d154   d164 d174  d184  d194  d1104   …0.d1n4  

   0.d113  d123  d133  d143  d153   d163 d173  d183  d193  d1103   …0.d1n3 

   0.d112  d122  d132  d142  d152   d162 d172  d182  d192  d1102   …0.d1n2 

   0.d111  d121  d131  d141  d151   d161 d171  d181  d191  d1101   …0.d1n1 

   0.d110  d120  d130  d140   d150   d160 d170 d180  d190  d1100   …0.d1n0 

                               ……… 

   0.d11′   d12′  d13′   d14′    d15′    d16′  d17′  d18′   d19′  d110′     …0.d1n′ 

 

Discussion: 

The first index of the decimal number  1d1 marks that entire number.  The 
second index marks the number of decimal places, or 1d1 = 0.d11d12d13d14 … d1n.  
The sub-index of the second index, the one that has been added to Cantor’s list 
for optimization, (to achieve unification in the interpretation of each individual 
element), has a limited interval of possible values (0-9).  In this purely 
“arithmetic square”, the number of arithmetic portions of sides is always equal 
to the number of arithmetic portions of diagonals. This derives from the fact that 
a decimal number which has at least one decimal place, otherwise it cannot be a 
decimal number.  Thus, the n sum of all decimal places of one single number 
(1d = 0.d1d2d3d4 …dn) is equal to the n sum of all possible decimal numbers in 
general (nd =d1d2d3d4 …dn ).  Are we now able to, in Cantor’s style, without 
any ontological discussion, to conclude that this is also a case of the equality of 
a portion with its whole?  Of course we cannot, because the place of a number 
is not the number itself.  In the system of decimal expression, all places are zero 
until proven otherwise (0,000…0…).  Where the decimal place is zero, no 
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number exists (1,2,3…9), but its place does exist (0,1,2,3,…10,11,12,…n).  This 
characteristic of zero to absolutely replace every number in any position is of the 
deepest philosophically mathematic significance, which is closely expressed in 
the very structure of a decimal number. 

.  

         Interpretation of the components of the synchronic list:  

 

a) 1, 2, 3, ...n – decimal numbers; 

b) 1d1, 1d2, 1d3 ... 1dn – individual decimal numbers;  

c) (n) – the second index digit; represents the number of decimal places; 
for every number d , it develops horizontally into a sequence (n=1,2,3,4...n), while 
vertically for all d numbers it is equal because they all have the same number of 
decimal places - (n); 

d) (n′) – the third index number; the constant of synchronicity of all 
decimal numbers; represents the entire interval of numeric values of each 
decimal place: i[n′(9,8,7, ...0)]; horizontally it is monotonously repeats because these 
are cases in which certain decimal numbers in their decimal places have equal 
decimals; vertically, for the numbers 1d1, 2d2, 3d3 ... ndn , it has a periodicity of 
10, because each tenth, hundredth, thousandth… etc. decimal place of any and 
every d can have any value within the interval, except in the case of a specific 
decimal number whose decimals are in an actual coexistence, in which case 
these values must be individually and specifically numerically defined;  

e) (=) – relation of synchronicity for numbers; 

 f) (0.d) –  the number between one and zero.  

 

Thus:  

 

1          1 d1n9 = 0.d119 d129  d139  d149 d159. d169 d179 d189  d199.......d1n9                    

2          1 d1n8  = 0.d118 d128  d138 d148 d158  d168 d178 d188  d198.......d1n8                                           
3          1 d1n7  = 0.d117 d127  d137 d147 d157 d167 d177  d187 d197...... d1n7 
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4        1 d1n6  = 0.d116 d126  d136  d146 d156  d166 d176 d186  d196.......d1n6 

5        1 d1n5  = 0.d115 d125  d135  d145 d155  d165 d175  d185 d195.......d1n5  

6        1 d1n4  = 0.d114 d124  d134  d144 d154  d164 d174  d184 d194.......d1n4  

7 1 d1n3  = 0.d113 d123  d133  d143 d153  d163 d173  d183 d193.......d1n3 

8        1 d1n2  = 0.d112 d122  d132  d142 d152  d162 d172  d182 d192.......d1n2 

9 1 d1n1  = 0.d111 d121  d131  d141 d151  d161 d171  d181 d191.......d1n1 

10 1 d1n0  = 0.d110 d120  d130  d140 d150  d160 d170  d180. d190......d1n0 

................................................................................................              

1          d1nn′     = 0.d11n′d12n′ d13n′d14n′ d15n′ d16n′d17n′ d18n′ d19n′.......d1nn′ 

................................................................................................. 

11        1 d2n9 =  0.d219 d229  d239  d249 d259. d269 d279 d289 d299.......d2n9                    

12        1 d2n8  = 0.d218 d228  d238 d248 d258  d268 d278 d288  d298.......d2n8                                          
13        1 d2n7 =  0.d217 d227  d237  d247 d257 d267 d277 d287  d297.......d2n7 

14  1 d2n6  = 0.d216 d226  d236  d246 d256  d266  d276 d286 d296.......d2n6 

15  1 d2n5  = 0.d215 d225  d235  d245 d255  d265 d275  d285 d295.......d2n5  

16  1 d2n4  = 0.d214 d224  d234  d244 d254  d264 d274  d284 d294.......d2n4  

17  1 d2n3  = 0.d213 d223  d233  d243 d253  d263 d273  d283 d293.......d2n3 

18       1 d2n2  = 0.d212 d222  d232  d242 d252  d262 d272  d282 d292.......d2n2 

19  1 d2n1  = 0.d211 d221  d231  d241 d251  d261 d271  d281 d291.......d2n1 

20  1 d2n0  = 0.d210 d220  d230  d240 d250  d260 d270  d280. d290......d2n0 

................................................................................................              

2          d2nn′     = 0.d21n′d22n′ d23n′d24n′ d25n′ d26n′d27n′ d28n′ d29n′.......d2nn′ 

.................................................................................................                                                
21        1 d3n9  = 0.d319 d329 d339  d349 d359. d369 d379 d389 d399.......d3n9                    

22       1 d3n8  = 0.d318 d328  d338  d348 d358  d368 d378 d388 d398......d3n8                                             
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23  1 d3n7  = 0.d317 d327  d337  d347 d357  d367 d377 d387 d397.......d3n7 

24  1 d3n6  = 0.d316 d326  d336  d346 d356  d366  d376 d386 d396.......d3n6 

25 1 d3n5  = 0.d315 d325  d335  d345 d355  d365 d375  d385 d395.......d3n5  

26 1 d3n4  = 0.d314 d324  d334  d344 d354  d364 d374  d384 d394.......d3n4  

27 1 d3n3  = 0.d313 d323  d333  d343 d353  d363 d373  d383 d393.......d3n3 

28      1 d3n2  = 0.d312 d322  d332  d342 d352  d362 d372  d382 d392.......d3n2 

29 1 d3n1  = 0.d311 d321  d331  d341 d351  d361 d371  d381 d391.......d3n1 

30 1 d3n0  = 0.d310 d320  d330  d340 d350  d360 d370  d380. d390......d3n0 

................................................................................................                                                 
3          d3nn′     = 0.d31n′d32n′ d33n′d34n′ d35n′ d36n′d37n′ d38n′ d39n′........d3nn′                                          
                          ........................ 

This derives: 

     

1       d1nn′ = 0.d11n′   d12n′   d13n′   d14n′   ....d1nn′ 

2       d2nn′ = 0.d21n′   d22n′   d23n′   d24n′   ....d2nn′ 

3       d3nn′ = 0.d31n′   d32n′   d33n′   d34n′   ....d3nn′ 

4       d4nn′ = 0.d41n′   d42n′   d43n′   d44n′   ....d4nn′ 

                                   ........................ 

n       dnnn′= 0.dn1n′  dn2n′  dn3n′   dn4n′   ....dnnn′ , and as , by assumption, n (dnnn′) = n 
(0.dnnn′), finally ⇒ d = 0.d.  

 

Each individual decimal number and all of them together, taken from the 
principle one decimal – one decimal place – one decimal number, e.g. from the 
correspondence 1:1:1, in the individual symmetric counting of all possibilities 
d=0.d.  Through this complete induction to the widest possible concept of a 
decimal number, we have shown a two-way deductive-inductive passage of the 
listing by method of synchronization.  
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This is how we have arrived at the most compact form of the listing of 
decimal numbers by the “one decimal – one decimal place – one decimal 
number”. By the rigid application of the triple univocal correspondence 1:1:1, 
the synchronic list is vastly simplified, so that the first index digit is also the 
number of all decimal places and the entire number, while the second index digit 
is constant (n′ = 9,8,7...0):  

     

1       d1n′ = 0.d1n′                                                                   

2       d2n′ = 0.d1n′ d2n′                                                                                                                  
3       d3n′ = 0.d1n′ d2n′ d3n′                                                                                                           
4       d4n′ = 0.d1n′ d2n′ d3n′ d4n′   

               .................. 

n      dnn′ = 0.d1n′ d2n′ d3n′ d4n′ .... dnn′ , and assuming that n(dnn′ ) = n(0.dnn′), this 
derives d=0.d. 

 

It is now possible to correctly count all the decimal numbers. 

There are exactly 10 different decimal numbers with one decimal, exactly 
10x10 with two, exactly 10x10x10 with three, thus: 

 

d1n′ = 0.d1n′                                                   = 10                                                                                           
d2n′ = 0.d1n′ d2n′                                             = 10x10                                                                     
d3n′ = 0.d1n′ d2n′ d3n′                                  = 10x10x10                                                               
d4n′ = 0.d1n′ d2n′ d3n′ d4n′                           = 10x10x10x10 

     ..................                                     ..................                                                                   
dnn′ = 0.d1n′ d2n′ d3n′ d4n′ .... dnn′ , e.g., all decimal numbers, there is exactly 

10n + 1 − 10
9  . 

 

Conclusion:  
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For the number of digits n=1,2,3,4...n there are 10, 110, 1110, 11110.... 

10n + 1 − 10
9   N natural numbers, thus α is decimal = α  decimal places =α 

decimal numbers = α natural numbers =  10n + 1 − 10
9  , in correspondence 

with 1:1:1:1, which means there are exactly as many decimal numbers as there 
are natural numbers and that Cantor’s “diagonalization argument” at least in this 
case, does not apply.  

Finally, if we were to disassemble each decimal into elements, in the 
sense (d=0.3=0.1+0.1+0.1) and were to compare it to N=3=1+1+1, we would 
find that 0.0 ∼ 0, the sum of the ones of the first ten decimal numbers is equal to 
the sum of ones of the first ten natural numberssuma, ∑ d (0.1) = ∑ N (1), 
according to the formula for the summation of ones in a sequence of natural 

numbers N, e.g. that  n( )n + 1
2  , which again confirms that there are as many 

decimal numbers d, as there are natural numbers N, as shown in the table: 

(0.0)                    ⇒ (0)  

(0.1)                    ⇒ (1)  

(0.1), (0.1)           ⇒ (1, (1) 

(0.1), (0.1), (0.1)  ⇒ (1), (1), (1) 

……. 

(0.1) x 9              ⇒ (1) x 9, which is also true for the potency of all other 
decimal places.  

For the sake of Cantor’s followers, let us attempt to count natural numbers 
using Cantor’s correct correspondence, once one - one natural number; for 
example: 

1,  1,  1,  1,  1, ... sum is 5  

1,  2,  3,  4,  5, ... sum is 15 
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Is this the cantorian proof that the “infinity of natural numbers is 
greater than the infinity of ones”?  Of course not, because a 
correspondence in the following form is imminent for natural numbers:  

  

1,   11,   111,  1111…sum is 10. 

1,     2,       3,        4…sum is 10. 

We must count a zero as a zero and not as 1 because n x 1 = n, and n x 1 
x 0 = 0, from which we can deduct that zero has a stronger power than 1 and 
than n.  Why?  Zero is the arithmetic infinity, with physical characteristics, and 
as such is the absolute limit for what is arithmetically correct as well as what is 
physically finite. 

 

Characteristics of x = 0, x1 x 2 x 3 x 4 … x n : 

 

Cantor’s list is only actual for the choice of one decimal for x per each 
decimal place, e.g. it predicts only one possible decimal for the tenth decimal 
place - d11 , hundredth - d22 , thousandth - d33 ...etc., while the number 0.x1 allows 
for the actual choice of ten decimals (9,8,7...0) in the tenth decimal place, as 
many in the hundredth x2, the thousandth x3… that is to say that the number  x = 
0, x1 x 2 x 3 x 4 … x n and is actual for a choice of 10 decimals for each decimal 
place, the tenth, the hundredth, the thousandth…  It is clear that any concrete 
value of  d11, d22, d33 ... x can have some other value.  The list and x play the 
following game:  the list says, “d11 = 0,2”, and x says “0, x1 = 0,7”, the list says 
“d22 = 0,03”, and x says “0, 0x2 = 0,05”, the list again says “d33 = 0,003”, but x 
says to that “0, 00x3 = 0,009”  and so on, as the Russian mathematician Esenin-
Volpin said, “to exhaustion”.  If x only had the choice of two decimals, the list 
would lose its listing game with it, if the first decides the value.  

Cantor’s number x has a greater resolution than his list and, thus, if we 
enlarge the resolution of the list, x must appear.  

Foremost, the very symbol x in 0,x1 , signifies that x immediately 
corresponds  to the full interval of decimals (n′ = 9,8,7...0), and the index digit x1 
with the second index digit 0.d11  , e.g. symbol of the first decimal place and 
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does not have to coincide with the symbol of the entire number.  

We are left with only one task – to build a house for Cantor’s homeless 
number x, under the principle of simultaneity, so that it may dwell in it.   

Let us develop the first decimal place 1d1 according to the constant d11n′ , 
and look for 0.x1 there, which in the synchronic list must be in correlation with 
the first decimal of the number 1 d1nn′ = 0.d11n′, x2  the second decimal number, 
x3  the third, etc., up until 0.xn  = 0.d1nn′ . And here is how, in the list 
synchronized with the characteristics of x, x appears:  

 x         = 0,x1  

 1 d1nn′ = 0.d119                                                                   

            d118  

               d117                                                     

                  d116                                              

                     d115                                      

                        d114  

                           d113                        

                                          d112                                                                                                 

                                             d111     x2      x3     x4        ... xn 

                                    d110  d12n′   d13n′  d14n′ ... d1nn′           

 Conclusion: 

 

If x does not have a value in interval d11n′ , e.g. if 0.x1 doesn’t have any 
of the first decimals of 0.x1 = 0.9, 0.8, 0.7....do 0.0, and if for x = 0.x1x 2x3x 4…x 

n the following does not apply x = d1nn′ , then x is not and cannot be a decimal 
number. By further comparison, we repeat what we already know. 

Discussion: 

In the example of listing decimals, we demonstrated the functioning of the 
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Scott-Leibniz concept of compossibility, according to which, of all possible 
instances, only those are realized which can coexist, in other words, those that 
are compatible in time.  We have demonstrated that the entire mathematical 
cosmos d1 results in only one actual instance, with only one physical number 
d1.  If I were to write the decimal number  d1= 0. 27451401, then every other 
number that I write, actualize, must be d2, which especially is true in the case of 
equal numbers, for example d1= 0. 27451401 and d2= 0. 27451401. Why?  
Because the mathematical reproduction does not mean that the numbers 
physically coincide, but only that they are of equal value, which in mathematics 
is spontaneously respected in practical problems, where for example, we cannot 
treat two twos in a given expression as one, while in theoretical mathematic this 
ontological aspect of numbers is not taken seriously.    Contrary to the very 
practice of mathematics, there is a casual attitude that “equal numbers exist 
whenever we want them to”, and if it is clear that this cannot be true for actual 
numbers because their number is always a determined amount and they appear 
in sequence.  

If we write 1=1=1=1, that principle (=) defines the simultaneity of four 
ones, which is why we cannot write 2=3, because these numbers are not 
simultaneous, but we can write 2/2=3/3/=4/4...=1, because through the ones the 
synchronization of actual numbers is achieved, while the number 0, in the world 
of natural numbers, represents only the actual infinity itself.  

One need not be too intelligent or educated, but merely sensible and ready 
for the truth, to see that zero is the only number which, due to the nature of the 
necessity, fulfills Cantor’s minimum requirement for an infinite sum – “to 
contain at least one component as great as itself”, or rather to contain a “portion 
that is equal to the whole”.  However, zero fulfills much more than that basic 
requirement: zero cannot be altered in mathematical operations because the 
parts of zero are mutually equal and every part of zero is equal to the whole 
zero;  (0+0+0+0+…0 x n…+ 0 x 0 = 0). This is all on this subject for now as we 
will elaborate on operations with zero in the later section, “Of the physical 
interpretation of mathematical operations”.  

Enthralled by the constant division of one, Cantor forgot about zero, 
which has exactly all the characteristics of an infinite that he looks for; not just 
the one, but “every element  of the sum of zero, as well as the sub-sum of its 
parts, is equal to the whole zero”.  However, obviously, in the concept groups, 
it is impossible to conceive an absolutely empty group because it must be “an 
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array element of itself” B. Russell and this is where we are faced with an aporia 
that is unsolvable on the level of understanding actual infinity as a time-material 
group.  In short, on a purely mathematical level, Cantor encountered its physical, 
or rather time constrictions and, all in all, found that he did not think abstractly 
enough.  Real physical time is much more abstract  than the mathematical 
symbol T0, or 0 itself written on a piece of paper; this zero in time that is beyond 
the senses, this mysterious constant present, cannot appear in any other form but 
that of a diverse real plenty, or group, as an vast space and almighty matter.  It is 
the “existing nothingness” that we lack the sense of, but that allows for all of 
our senses as it allows for all that our senses receive. This is why the 
understanding of time is the same as understanding of the way in which infinity 
produces parts, the same as the understanding of the way zero produces ones, or 
rather, the understanding of the way by which the present essentially generates 
space and matter.  “The essence of the mind is emptiness”- so say the 
Upanisads, so say the Tibetan monks.  Where would they know this from, were 
it not so? After decades of thought, I vouch that this is the deepest truth.  This is 
why I am convinced that infinity, the zero, the decimal point, the present – it is 
possible to completely comprehend them all, because they are all one and the 
same and, speaking topologically, all within us.  More than this, it is everywhere 
and always.  The present – theoretically, and the seeming differences among 
vast numbers of objects and beings – experimentally, they are the real subject of 
all human sciences. 

The solving of the most common equation, for example like 2 + x = y is 
basically an operation of the synchronization of numbers, the bringing of those 
numbers into a common present, e.g. the actualization.  Here is a complementary 
example from physics: why is Heisenberg’s “principle of non-determinacy” – a 
non-equation and not an equation?  Obviously because the impulse and position 
of electrons cannot be determined simultaneously, and that lack of power is 
again due to the fact that we don’t know what time is.  Even philosophy has 
notion that when we write 1=1 it means to have two ones that are temporally, 
e.g. physically connected and it does not mean merely having some imaginary 
one in two places.  Eternity and the unchanged course of Plato’s concepts are in 
fact characteristics of the present.  

Finally, this should make sense to everyone, except Cantor’s followers, 
that n and n+1 are not simultaneous because, while we have an actual n, we do 
not have a real physical correspondence for the actual n+1, so we should not 
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imagine it in mathematics either because as a final instance of the process of 
deep thought, it is this that supports the hypothesis by which spirit and matter do 
not have the same basis.  The imminent consequence of this shallow stance is 
the fundamental lack of connection between mathematics and physics, although 
they both do study the same real world to which they also both belong. As both 
of these sciences are exact, they are both in essence exclusively occupied by 
time and only a real hypothesis of time can, to a satisfactory degree, uncover the 
natural fundaments that they share.  

In the example of x we have been convinced that the prediction of the 
actualization of every concrete decimal number in a synchronic list is crucial, 
and as such- is correct; the essence of what is crucial is the truth,  (from the truth 
falsity can not follow), and the essence of the truth is existence (all that exists is 
in some way true). 

If we apply mathematics to groups with an unknown number of elements, 
(the cardinal number of the hairs on someone’s head), or to groups whose 
individual complex systems we count as elements, e.g. 1:1, (for example, the 
number of atoms in a molecule), we need only be aware that this is practical and 
not theoretic mathematics and that the power of the tool of the human mind is 
far greater.  In this sense, the differential calculi, as well as the entire non 
standard analysis, are clearly practical mathematics, only. 

A blatant example of mathematical pragmatism in physics is 
unquestionably the formula for the calculation of the speed of motion s/t = v, 
e.g. velocity = distance divided by time, where we multiply and divide numbers 
that have been given different variables because this is mostly in agreement with 
experience.  Physics and mathematics require an ontologically deeper 
conception of motion than the constant movement of a body through empty 
space and the jumping of electrons on quantum levels.  Experience is not an 
alibi for misconception; the Sun revolving around the Earth also coincides with 
our experience.  In the General Theory of Relativity, Einstein called this fact, in 
which the observer very much decides his own experience, very appropriately 
“the epistemological defect”.  In that same sense, the phantom x demonstrates 
the defectiveness of one-sided listing, and not the lack of natural numbers. 

We also notice that the synchronic list works as nature itself does.  Why is 
that? 

The principle of synchronicity in mathematics is the induction of physical 
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characteristics to numbers.  n is mathematics, however 1,2,3,4 is physics, these 
are numbers with the characteristic of originality, because we have a unique one, 
a two, a three…; just by receiving a value, a number crosses from the infinite 
world into the finite, from the unspecified to the specific, it is characterized by 
temporal meaning and is actualized by this. Certainly we may operate with 
actually conceived numbers without being aware of their temporal purpose, but 
this is possible only because numbers have their temporal purpose in any case, 
whether we are aware of it or not.  Mathematicians always essentially observe 
numbers in synchronicity, because the key symbol is (=), and are not even aware 
of it, but rather they naively believe that mathematics is timeless.  This attitude 
degrades mathematics to a technical level and, often, merely to a banal 
intellectual game.  In general, the most important flaw of mathematics is its very 
poorly developed ontology.   

 

AN ANCOUNTABLE SET 

Cantor's original proof considers an infinite sequence of the form (x1, x2, x3, ...) 
where each element xi is either 0 or 1. 

Consider any infinite listing of some of these sequences. We might have for 
instance (figure 1): 

s1 = (0, 0, 0, 0, 0, 0, 0, ...)  

s2 = (1, 1, 1, 1, 1, 1, 1, ...)  

s3 = (0, 1, 0, 1, 0, 1, 0, ...)  

s4 = (1, 0, 1, 0, 1, 0, 1, ...)  

s5 = (1, 1, 0, 1, 0, 1, 1, ...)  

s6 = (0, 0, 1, 1, 0, 1, 1, ...)  

s7 = (1, 0, 0, 0, 1, 0, 0, ...)  

...  

And in general we shall write 

sn = (sn,1, sn,2, sn,3, sn,4, ...)  
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that is to say, sn,m is the mth element of the nth sequence on the list. 

It is possible to build a sequence of elements s0 in such a way that its first 
element is different from the first element of the first sequence in the list, its 
second element is different from the second element of the second sequence in 
the list, and, in general, its nth element is different from the nth element of the nth 
sequence in the list. That is to say, s0,m will be 0 if sm,m is 1, and s0,m will be 1 if 
sm,m is 0. For instance: 

s1 = (0, 0, 0, 0, 0, 0, 0, ...)  

s2 = (1, 1, 1, 1, 1, 1, 1, ...)  

s3 = (0, 1, 0, 1, 0, 1, 0, ...)  

s4 = (1, 0, 1, 0, 1, 0, 1, ...)  

s5 = (1, 1, 0, 1, 0, 1, 1, ...)  

s6 = (0, 0, 1, 1, 0, 1, 1, ...)  

s7 = (1, 0, 0, 0, 1, 0, 0, ...)  

...  

s0 = (1, 0, 1, 1, 1, 0, 1, ...)  

(The elements s1,1, s2,2, s3,3, and so on, are here highlighted, showing the origin 
of the name "diagonal argument". Note that the highlighted elements in s0 are in 
every case different from the highlighted elements in the table above it.) 

Therefore it may be seen that this new sequence s0 is distinct from all the 
sequences in the list. This follows from the fact that if it were identical to, say, 
the 10th sequence in the list, then we would have s0,10 = s10,10. In general, if it 
appeared as the nth sequence on the list, we would have s0,n = sn,n, which, due to 
the construction of s0, is impossible. 

From this it follows that the set T, consisting of all infinite sequences of 
zeros and ones, cannot be put into a list s1, s2, s3, ... Otherwise, it would be 
possible by the above process to construct a sequence s0 which would both be 
in T (because it is a sequence of 0s and 1s which is by the definition of T in T) 
and at the same time not in T (because we can deliberately construct it not to 
be in the list). T, containing all such sequences, must contain s0, which is just 
such a sequence. But since s0 does not appear anywhere on the list, T cannot 
contain s0. 
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Therefore T cannot be placed in one-to-one correspondence with the natural 
numbers. In other words, it is uncountable. 

... the diagonal argument establishes that, although both sets are infinite, there 
are actually more infinite sequences of ones and zeros than there are 
natural numbers. 

                       ============================================= 

 It claims that: if an unlimited sequence of objects (x1, x2, x3, ... xn ) , where 
every element of the sequence is xn  or 0 or 1 – is developed into a list, that lsit 
will not contain certain parts of that sequence.  In other words, it proves that the 
sequence (x1(0;1), x2(0;1), x3(0;1), ... xn(0;1) ) does not contain all of it’s variations, 
which is not only contrary to the assumption, but also absurd.  If Cantor’s 
condition defines the sequence, then that sequence must entirely fulfill the given 
condition, or the condition for the sequence has not been formulated well.  We 
will show that Cantor’s condition for the development of the sequence is not 
explicit because it contains a hidden time component. 

Therefore, Cantor, in the same sense as in the list of decimal 
numbers, claims that there is a sequence x1, x2, x3, ... xn …, which cannot 
be counted. 

Let us apply the method of synchronicity here as well. 

In order to prove the above statement, Cantor sets a condition by 
which in one place S =  x1 we may write either 0 or 1.  In this condition 
the time and space of x1 are not equivalent in number, or rather are not 
equal in value, because for one place 1S1x1 (space) has two times 2Tx1 = 
(Tx1(0) +  Tx1(1)) . Geometrically developed, this is the condition for which 
“one same space has two different time coordinates”. 

 

             T1x1(1)  ; T2x2(1)  ;   T3x3(0)  ...  Tnxn(1) 

             T1x1(0)  ; T2x2(0)  ;   T3x3(0)  ...  Tnxn(0)   

T0=S0   ----x1--------x2----------x3----------xn------------- Cantor’s set  

                    S1x1       ;  S2x2       ;      S3x3       ...    Snxn      
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The question in this instance is how to reach numerical 
equivalency, in other words correspondence of 1:1, which is necessary for 
the counting of sequences by listing. 

By setting the condition that Sx1 in Tx1  can be either  0 or 1, 
Cantor apparently inserts the temporality of numbers, or unconsciously, 
by necessity, or betting on the possibility that we won’t think that the 
problem has to do with time. 

If in the present T0 has two values for x, e.g. 0 and 1, this means we 
have 2 synchronic possibilities for the actualization of each array element 
of the sequence, that is to say that for every  xn two “presents” must 
simultaneously be - 0 i 1. According to this, the time coordinates of 
diagonal synchronicity of Tx which contains all the possible sequences of 
the alternative (0;1) which are  Tx1(0;1), Tx2(0;1), Tx3(0;1), Tx4(0;1), Txn(0;1). 
For argument sake, let us construct a temporal coordinate system for the 
“alternative present” Tx, with coordinates developed through Txn(0;1): 

  

 

 

 

Txn(1)                                                      Txn(0;1) 

 …                                               …  

Tx4(1)                                Tx4(0;1) 

Tx3(1)                        Tx3(0;1) 

Tx2(1)               Tx2(0;1) 

Tx1(1)      Tx1(0;1) 

Tx -------------------------------------------------------  

          Tx1(0) Tx2(0) Tx3(0) Tx4(0)… Txn(0) 

 

(figure 2)_ 
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It is obvious that every sequence in the form 0110111001...01... 
must fall on the diagonal Tx [Tx1(0;1)Tx2(0;1)Tx3(0;1)Tx4(0;1)… Txn(0;1)].  
This consequently derives synchronicity tables, developed according to 
the synchronic elements of 0 and 1, which Cantor’s sequences are 
comprised of.  

Note:  in the first case of 0;1, in the present T0 in terms of space 
there are only two possibilities for the sequence to, 0 and 1, but because of 
the given requirement for one to coexist with the second, third, 
fourth…etc. member  of the sequence, temporality allows for two more 
such possibilities, e.g.  in the case of  T0 the sequence can begin, or it can 
continue with Tx0...1, Tx1...0, Tx0...0 and Tx1...1. Thus, the full synchronicity 
of elements, for both time and space, in this first case of Tx1(0;1) , is not 

two but four, e.g. 2 x 21, (two special possibilities each for two presents) .  
However, as the second array member follows the first and, it gives the 
first a fixed temporality, which reduces the number of possibilities now 
from four to two.  The other two possibilities can be realized eternally, in 
other words, in the total sum of “future” synchronic sequences 

(n+1)Txn+1(0;1) =   2n + 1we must count them, as 2 x 21. 

 

Tables of synchronicity for an unlimited number of objects (x1, x2, 
x3, ... xn )   where every element of the sequence is  xn  or 0 or 1:       

 

1      Tx1(0;1)  = 21 

-------------------- 

1      =  x1=0                                                         

2      =  x1=1                                                         

--------------------- 

2     Tx2(0;1)    =  22
 

--------------------- 
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1       = x2=0,0 

2       = x2=1,1 

3       = x2=0,1 

4       = x2=1,0 

--------------------- 

3     Tx3(0;1)    = 23
 

--------------------- 

1       = x3=0,0,0 

2       = x3=1,1,1 

3       = x3=0,1,1 

4       = x3=1,1,0 

5       = x3=0,0,1 

6       = x3=1,0,1 

7       = x3=0,1,0 

8       = x3=1,0,0 

--------------------- 

4     Tx4(0;1)     = 24
 

--------------------------- 

1    = x4=0,0,0,0 

2    = x4=1,1,1,1 

3    = x4=0,1,1,1 

4    = x4=0,0,1,1 

5    = x4=0,0,0,1 

6    = x4=1,0,0,0 
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7    = x4=1,1,0,0 

8    = x4=1,1,1,0 

9    = x4=0,1,0,1 

10  = x4=1,0,1,0 

11  = x4=1,0,1,1 

12  = x4=1,1,0,1 

13  = x4=1,0,0,1 

14  = x4=0,1,1,0 

15  = x4=0,1,0,0 

16  = x4=0,0,1,0 

--------------------- 

5    Tx5(0;1)     = 25 

--------------------- 

1    = x5=0,0,0,0,0 

2    = x5=1,1,1,1,1 

3    = x5=0,1,1,1,1 

4    = x5=0,0,1,1,1 

5    = x5=0,0,0,1,1 

6    = x5=0,0,0,0,1 

7    = x5=1,0,0,0,0 

8    = x5=1,1,0,0,0 

9    = x5=1,1,1,0,0 

10  = x5=1,1,1,1,0 

11  = x5=0,1,1,1,0   
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12  = x5=0,0,1,0,0 

13  = x5=0,1,0,0,0 

14  = x5=0,1,1,0,0 

15  = x5=0,0,1,1,0 

16  = x5=0,1,1,1,0 

17  = x5=0,1,0,0,0 

18  = x5=0,0,0,1,0 

19  = x5=1,0,0,0,1 

20  = x5=1,1,0,0,1 

21  = x5=1,1,1,0,1 

21  = x5=0,1,0,1,0 

22  = x5=1,0,1,0,0 

23  = x5=1,0,1,0,1 

24  = x5=1,0,0,1,0 

25  = x5=0,1,1,0,1 

26  = x5=0,1,0,1,1 

27  = x5=1,0,0,1,1 

28  = x5=1,1,0,1,1 

29  = x5=0,0,1,0,1 

30  = x5=1,1,0,1,0 

31  = x5=1,0,1,1,1 

32  = x5=1,0,1,1,0 

------------------------ 

6     Tx6(0;1)     = 26
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---------------------------- 

1   =  x6 =0,0,0,0,0,0 

2   =  x6 =1,1,1,1,1,1 

3   =  x6 = 0,0,0,0,1,1 

4   =  x6 = 0,0,0,1,1,1 

       ................ 

64 = x6=0,0,1,1,0,0 

------------------------- 

7    Tx7(0;1)    = 27
 

------------------------- 

1   = x7 = 0,0,0,0,0,0,0 

2   = x7 = 1,1,1,1,1,1,1 

3   = x7 = 0,0,0,0,0,0,1 

4   = x7 = 0,0,0,0,0,1,1 

       ................ 

128 = x7=1,0,1,1,1,0,1 

            

Note: the first seven elements of Cantor’s “uncountable set” s0 = (1, 0, 1, 
1, 1, 0, 1, ...)” from the example above, can be found in the synchronic 

table 7Tx7(0;1) = 27, e.g. the one that contains 27 variation with the 
repetition of 0 and 1, synchronic in Tx7. The other components of this 
sequence, e.g. the eighth, ninth, tenth…  n-ti are listed in the synchronic 

table nTxn(0;1) = 2n.   

 -------------------------- 

8    Tx8(0;1)    =   28
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-------------------------- 

1     = x8=0,0,0,0,0,0,0,0 

2     = x8=1,1,1,1,1,1,1,1 

3     = x8=1,1,1,1,1,1,1,1  

4     = x8=1,1,1,1,1,1,1,1  

       ................ 

256 = x8=0,1,1,0,1,1,0,0 

 ------------------------------ 

nTxn(0;1) = 2n 

------------------------------- , 

Or, all individual sequences, added: Σ  2n + 1 – 2. With the member (– 2) 

only two of four possibilities are actualized 2 x 21 of the first synchronic 
table, which has already been discussed.  

 

Synchronic table with formula (n+1)Txn+1(0;1) =   2n + 1: 

 

This formula 2n + 1 , for example, for n=7 defines the number of 

synchronic combinations 28 e.g. for every n it defines a n-th, but also the 
next table n+1 of synchronic combinations 0 and 1, so that it is impossible 
to write or conceive the sequence 010101100...0...1... xn(0;1) , which is not 

contained and individually counted in advance here. Also, Σ 2n + 1 sums 
up all the sequences of the previous tables, while also counting two 
unused possibilities of the first synchronized table. In relation to this we 
observe something of great importance: for Cantor’s requirement “one 

place – two times” in the first synchronic table 21 only the first 2 of a 
total of 4 given possibilities are realized, while the other two possibilities 

are only realized in 2n + 1as a condition for unlimited growth. 

  34



(n+1)Txn+1(0;1) =   2n + 1 counts all the sequences one by one, as 
n+1, in the same way that the natural sequence N does with its members. 

It can be said that the synchronic table with formula (n+1)Txn+1(0;1) 

=   2n + 1 “predicts the future of Cantor’s sequences” because it contains 
them all and counts them, encompassing also every “future” sequence of 
n+1 members, which can be tested infinitely. 

 

Conclusion: 

All the actual sequences n are summed up in Σ  2n + 1 – 2 and all 
the possible n+1 sequences are included in the synchronic table of 

(n+1)Txn+1(0;1) =   2n + 1, which represents the sum of all possible 
synchronic tables and includes any of Cantor’s sequences, in the shape of 
0,1,1,0,...0,...1,....(n +1)(0;1).   

 

Explication of the method of synchronization of the elements of 
Cantor’s sequences: 

 

0 

1................                   =   21 

  

0,0 

1,1..............                  =   22 

 

0,0,0 

1,1,1............                  =   23 
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0,0,0,0  

1,1,1,1..........                 =   24 ... 2n... Σ  2n + 1 – 2 

 

0,0,0,0,0,...0,...n+1 

1,1,1,1,1,...1,...n+1        =   2n + 1 

 

Conclusion: All sequences in the form (0,1,0,1,1,0,0...0...1...n+1) with 

n+1 members, contain in the synchronic table 2n + 1 and this sum is not 
greater than the natural sequence N.   

“Consider any infinite listing of some of these sequences. We might have for 
instance: 

s1 = (0, 0, 0, 0, 0, 0, 0, ...)  

s2 = (1, 1, 1, 1, 1, 1, 1, ...)  

s3 = (0, 1, 0, 1, 0, 1, 0, ...)  

s4 = (1, 0, 1, 0, 1, 0, 1, ...)  

s5 = (1, 1, 0, 1, 0, 1, 1, ...)  

s6 = (0, 0, 1, 1, 0, 1, 1, ...)  

s7 = (1, 0, 0, 0, 1, 0, 0, ...)  

...  

And in general we shall write 

sn = (sn,1, sn,2, sn,3, sn,4, ...)  

that is to say, sn,m is the mth element of the nth sequence on the list.” 

 

Objection:  This is a blatant example of a purposely mistaken 
correspondence of the left and right sides of equivalency.  The list is set in 
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such a manner that the number of sequences is independent of the number 
of its members, e.g. the sequences on the left side of equivalency number 

n, while there are n2 of their members on the right, which means that the 
list realizes only the correspondence of one sequence only with its first 

member, because n=n2=1.  

  

“It is possible to build a sequence of elements s0 in such a way that its first 
element is different from the first element of the first sequence in the list, its 
second element is different from the second element of the second sequence in 
the list, and, in general, its nth element is different from the nth element of the nth 
sequence in the list. That is to say, s0,m will be 0 if sm,m is 1, and s0,m will be 1 if 
sm,m is 0. For instance: 

s1 = (0, 0, 0, 0, 0, 0, 0, ...)  

s2 = (1, 1, 1, 1, 1, 1, 1, ...)  

s3 = (0, 1, 0, 1, 0, 1, 0, ...)  

s4 = (1, 0, 1, 0, 1, 0, 1, ...)  

s5 = (1, 1, 0, 1, 0, 1, 1, ...)  

s6 = (0, 0, 1, 1, 0, 1, 1, ...)  

s7 = (1, 0, 0, 0, 1, 0, 0, ...)  

...  

s0 = (1, 0, 1, 1, 1, 0, 1, ...)  

(The elements s1,1, s2,2, s3,3, and so on, are here highlighted, showing the origin 
of the name "diagonal argument". Note that the highlighted elements in s0 are in 
every case different from the highlighted elements in the table above it.)” 

This is resolved by the following characteristics of synchronic tables: 

 

1) Every first array member of every sequence is found in the synchronic 
table 21. 
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2) Every second array member of every sequence is found in the synchronic 
table 22. 

3) Every third array member of every sequence is found in the synchronic 
table 23. 

4) Every n array member of every sequence is found in the synchronic table 
2n . 

Also: 

1) Every sequence of one member can be found in the synchronic table 21. 
2) Every sequence of two members can be found in the synchronic table 22. 
3) Every sequence of three members can be found in the synchronic table 23. 
4) Every sequence of n members can be found in the synchronic table 2n . 

Sequences are listed in a synchronic table in such a way so that, for 
example, the third member of the fifth sequence is in exactly the third 

place in 3Tx3(0;1)= 23, the fifth member of the seventh sequence is in the 

fifth place 5Tx5 (0;1)= 25, the eighth member of the ninth sequence in the 

eighth place in 8Tx8(0;1)=28, that is, as we have already stated, an entire 
sequence of seven members, for example ,  s0 = (1, 0, 1, 1, 1, 0, 1), can be 

found in the synchronic table 7Tx7(0;1) = 27, and any whole sequence of 

any number of members will be found in Txn(0;1) = 2n .  

Therefore, if we induce the temporality criterion of t=t into the 
above table of Cantor’s rearranged sequences (picture no.2) this will 
essentially constitute an order of the sequences in space, e.g. the n-th 
member of the n-th sequence will be in precisely the n-th place of the 
synchronic table 2n. 

Discussion:  On the diagonal of synchronicity (picture 2): for 
example, for the value Tx1(0) we have a synchronic value   Tx1(1)  and vice-
versa.  Every  Txn(0;1) develops its own synchronic table, which covers all 
possibilities.   

Every vertical sequence coincides with one horizontal sequence of 
an appropriate number of digits, for example, the vertical sequence Tx2 = 
0110 is equal to one of the horizontal sequences on the synchronic table 

  38



Tx4(0;1), the vertical sequence Tx3(0;1) =01101100 is equal to one of the 
horizontal sequences on the synchronic table in Tx8(0;1), etc. All vertical 
sequences are the same as some horizontal sequences, in other words, 
vertical sequences are “the subtotal of the horizontal sequences”, and thus, 
if we count the horizontal, we count all of the sequences.  To get the 1:1 
correspondence, all the sequences are broken down into elements that 
have a growth rate of 1, e.g. (0,1; 00,11; 000,111; 000,111; n(0;1)).  
Synchronically arranged, all sequences in the shape of 0101...1...0... can 
also be counted as n+1. At last, every sequence in the form 0101...1...0... 
can be counted individually as n+1. 

Finally, every sequence in the form  0101...1...0... is included in the 
table nTxn(0;1) , which further excludes the possibility of the existence of 
Cantor’s uncountable set of n elements.  

The elements of the synchronic table cannot further be ordered 
successively because they all exist simultaneously in T0,  that is to say, 
they coexist in the present.  It is clear that the synchronic relation of 
elements excludes the temporal hierarchy and their eventual order is only 
on paper.   

Synchronicity is the main temporal characteristic of natural 
numbers in general.  For example, if we write the number 4 as 1;1;1;1, it 
is obvious that all four ones coexist in T0(4), in other words they cannot be 
temporally arranged without bringing us into conflict with the assumption 
of the existence of the number 4 as a unique system in itself, coexistent 
with itself. 

Synchronicity is the highest natural form of order of equal physical 
elements, as well as mathematical.  It will be demonstrated that the 
synchronic table is the most powerful mathematical tool in physics 
because it is the eternal present, or the only real physical infinity, an 
absolute inertial system.  The continuity of synchronicity excludes 
succession, thus excluding motion itself, or in other words, change. 

The basic formal complaint toward Cantor’s “method of 
diagonalization” is the incorrect correspondence, e.g. the induction of 
equivalency among elements that are unequal in number.   For example, 
in the case of decimal numbers, d1 =  0. d11 d12 d13 ..., in the case of 
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sequences x1 = 01001101..., x2 = 1001010..., and also in the case of sets 
where “an empty set contains itself”, (the paradox 0=1). 

By avoiding two-way equivalency, Cantor succeeds in that 
exploration by his method by definition have negative results.  For 
example, decimal numbers and sets cannot be counted using Cantor’s 
method of diagonalization, yet based on this he positively concludes that 
“the infinity of decimal numbers is greater than the infinity of natural 
numbers”, and that there is “an uncountable set”.  However, from 
certain negative examples and the inability to apply a method 
successfully, we cannot follow a certain positive conclusion, so 
generalized that it cannot be understood and so this method is entirely 
unreliable and foreign to the physically exact spirit of mathematics.  The 
best judgment on the subject was given by Cantor himself in 1877, in a 
letter to Dedekind  (on the subject of the revelation that for every positive 
whole number n there exists a 1 to 1 correspondence of points along the 
line of all points in n dimensional space): “I see, but I do not believe”. In 
mathematics quite the reverse is true: “I don’t see, but I believe”, for 
example I cannot see numbers, I cannot see a length without a width, I 
cannot see a point that has no elements, yet I believe that all this exists. 

Cantor’s greatest accomplishment for science is certainly that, with 
extreme examples of incomplete induction and the ontologically 
unelaborated introduction of an actual infinity into mathematic thought, 
he inadvertently brought attention to the fact that the main problems in 
mathematics cannot be solved without physics and that the temporality of 
mathematics is absolutely necessary. 

----end---- 

 

 

 

 


